Diferencia entre revisiones de «Almagesto: Libro V - Capítulo 02»

Ir a la navegación Ir a la búsqueda
sin resumen de edición
<ref name="Referencia 007"></ref>
 
Cuando esta clase de observación fue realizada sin un posterior análisis, desde ambas observaciones, [aquellas] registradas por [[w:es:Hiparco_de_Nicea|'''Hiparco''']] y desde las nuestras, se encontró que la distancia de la Luna desde el Sol algunas veces estuvo de acuerdo con aquella calculada desde la hipótesis simple de arriba, y algunas veces en desacuerdo, siendo la discrepancia menor en algunos momentos y en otros mayor. Pero cuando prestamos más atención a las circunstancias de la anomalía en cuestión, y la examinamos más cuidadosamente sobre un período contínuocontinuo [de tiempo], descubrimos que en la conjunción y en la oposición ([[w:es:Sizigia|'''Sizigias''']]) la discrepancia [entre la observación y el cálculo] es un tanto imperceptible o pequeña, siendo la diferencia de un tamaño explicadoexplicable por la [[w:es:Paralaje#Paralaje_lunar|'''Paralaje lunar''']]; sin embargo, en ambas [[w:es:Cuadratura_(astronomía)|'''Cuadraturas''']], sin embargo, mientrasaunque la discrepancia es muy pequeña o ninguna [ocurre]nula cuando la Luna está en suel apogeo o en suel perigeo del [[Almagesto:_Sistema_Ptolemaico_o_Sistema_Geocéntrico|'''Epiciclo''']], ésta alcanza unaun máxima [discrepancia]máximo cuando [la Luna] está cerca de su velocidad media y [por lo tanto] la '''Ecuación de la Primera Anomalía''' también es también unaun máximamáximo; además, en ambas cuadraturas, cuando la primera anomalía es sustractiva [negativa] la posición observada de la Luna está incluso está en una longitud más pequeñamenor que aquellala calculada sustrayendorestando la ecuación de la primera anomalía, pero cuando la primera anomalía es aditiva [positiva] su verdadera posición es incluso mayor [que aquella calculada de sumarsumando la ecuación de la primera anomalía], y el tamaño [valor] de esta discrepancia está relacionada cercanamente al tamaño de la ecuación de la primera anomalía. Desde estas circunstancias sólo pudimos observar que debemos suponer el epiciclo de la Luna ser transportado sobre un círculo excéntrico, estando más alejado de la Tierra en conjunción y en oposición, y más cercano a la Tierra en ambas cuadraturas. Esto sucederá si modificamos la primera hipótesis a lo largo de algunas de las siguientes líneas.
 
Imaginar el círculo (en el plano inclinado de la Luna) concéntrico con la [[w:es:Eclíptica|'''Eclíptica''']] moviéndose hacia adelante, como antes [lo hicimos] [[Almagesto:_Libro_IV_-_Capítulo_06|Libro IV Capítulo 6]], (para representar el [movimiento en] latitud) alrededor de los polos de la eclíptica con una velocidad igual al incremento del movimiento en latitud sobre el movimiento en longitud. Nuevamente, imaginar la Luna atravesando el llamado epiciclo (moviéndose hacia adelante sobre su arco del apogeo) con una velocidad correspondiente a una vuelta de la primera anomalía. Ahora, en este plano inclinado, suponemos dos movimientos tomando lugar, en direcciones opuestas, ambos uniformes con respecto al centro de la eclíptica: uno de estos transporta el centro del epiciclo hacia la parte trasera a través de los signos con una velocidad de movimiento en latitud, mientras el otro [movimiento] transporta el centro y apogeo de la excéntrica, que asumimos ubicados en el mismo plano [inclinado], (el centro del epiciclo estará en todo momento localizado sobre esta excéntrica), hacia adelante a través [por ej. en orden reverso de] los signos por una cantidad correspondiente a la diferencia entre el movimiento en latitud y la elongación doble (la elongación siendo la cantidad por la cual el movimiento medio en longitud de la Luna excede el movimiento medio del Sol). Por lo tanto, para dar un ejemplo, en un día el centro del epiciclo recorre cerca de 13;14º en movimiento de latitud hacia la parte trasera [de los cielos] a través de los signos, pero parece haber atravesado en longitud 13;11º sobre la eclíptica, dado que todo el círculo inclinado [de la Luna] atraviesa la diferencia de 0;3º en dirección opuesta, [por ej.] hacia adelante, [mientras tanto] el apogeo de la excéntrica, en una vuelta, recorre 11;9º en dirección opuesta, (nuevamente hacia adelante): esta es la cantidad por la que la elongación doble, de 24;23º, excede el movimiento en latitud, de 13;14º. La combinación de ambos de estos movimientos, que toman lugar en direcciones opuestas, tal como dijimos, alrededor del centro de la eclíptica, producirá como resultado que el radio transportando el centro del epiciclo y el radio transportando el centro de la excéntrica estarán separados por un arco cuya suma es de 13;14º y 11;9º, y será el doble de la cantidad de la elongación (que es de aproximadamente 12;11 ½º). Por lo tanto el epiciclo recorrerá la excéntrica dos veces durante un [[w:es:Mes#Mes_sinódico|'''Mes Sinódico Medio''']]. Asumimos que este [epiciclo] vuelve al apogeo de la excéntrica en la conjunción y oposición media.
5360

ediciones

Menú de navegación