Diferencia entre revisiones de «Almagesto: Libro V - Capítulo 02»

Ir a la navegación Ir a la búsqueda
m
sin resumen de edición
m
<ref name="Referencia 007"></ref>
 
Cuando este tipo de observación fue realizada sin un posterior análisis, fue encontrado,hallada desdede ambas observaciones [aquellas] registradas por Hiparco y por nosotros mismos, que la distancia de la Luna desde el Sol está algunas veces de acuerdo con aquella calculada con la hipótesis [descrita] arriba, y algunas veces en desacuerdo, siendo la discrepancia menor en algunos instantesmomentos y mayores en otros momentos mayores. Pero cuando prestamos más atención aen las circunstancias de la anomalía en cuestión, y la examinamos mas cuidadosamente sobre un período continuocontínuo [de tiempo], descubrimos que en la conjunción y en la oposición la discrepancia [entre la observación y el cálculo] es tanto imperceptible o pequeña, siendo la diferencia de un tamaño determinado por la paralaje lunar; en ambas cuadraturas, sin embargo, mientras la discrepancia es muy pequeña o ninguna cuando la Luna está en su apogeo o perigeo del epiciclo, ésta alcanza una máxima [diferencia] cuando la Luna está cerca de su velocidad media y [por lo tanto] la ecuación de la primera anomalía tiene también ununa máximomáxima; además, en ambas cuadraturas, cuando la primera anomalía es subtractiva, la posición observada de la Luna estáes incluso en una longitud más pequeña respecto de la calculada substrayendo la ecuación de la primera anomalía, pero cuando la primera anomalía es aditiva su verdadera posición es incluso mayor [que aquella calculada de sumar la ecuación de la primera anomalía], y el tamaño de esta discrepancia estaestá cercanamente relacionada al tamaño de la ecuación de la primera anomalía. Solamente desde estas circunstancias pudimos ver, que deberíamos haber supuesto el epiciclo de la Luna ser transportado sobre un círculo excéntrico, estando más alejado de la Tierra en conjunción y oposición, y más cercana a la Tierra en ambas cuadraturas. Esto sucederá si modificamos un tanto la primera hipótesis a lo largo de algunosalgunas de las siguientes líneas.
 
Imaginar el círculo (en el plano inclinado de la Luna) concéntrico con la eclíptica moviéndose hacia adelante, como antes [lo hicimos] [[Almagesto:_Libro_IV_-_Capítulo_06|Libro IV Capítulo 6]], (para representar el [movimiento en] latitud) alrededor de los polos de la eclíptica con una velocidad igual al incremento del movimiento en latitud sobre el movimiento en longitud. Imaginar, nuevamente, la Luna atravesandorecorriendo el llamado epiciclo (moviéndose hacia adelante sobre sursu arco del apogeo) con una velocidad correspondiente a launa vuelta de la primera anomalía. Ahora, en este plano inclinado, suponemos dos movimientos a tomartomando lugar, en direcciones opuestas, ambos uniformes con respecto al centro de la eclíptica: uno de estos transporta el centro del epiciclo hacia la parte trasera a trevés de los signos con una velocidad de movimiento en latitud, mientras el otro [movimiento] transporta el centro y apogeo de la excéntrica, que asumimos ubicados en el mismo plano [inclinado], (el centro del epiciclo estará en todo momento localizado en ésta excéntrica), hacia adelante a través [ej. en orden reverso de] los signos por una cantidad correspondiente a la diferencia entre el movimiento en latitud y la elongación doble (la elongación siendo la cantidad por la que el movimiento medio de la Luna en longitud excede el movimiento medio del Sol). Por lo tanto, por dar un ejemplo, en un día el centro del epiciclo atraviesarecorre cerca de 13;14º en movimiento en latitud hacia la parte trasera [de los cielos] a través de los signos, pero parece haber atravesadorecorrido 13;11º en longitud sobre la eclíptica, dado que todo el círculo inclinado [de la Luna] atraviesarecorre la diferencia de 0;3º en dirección opuesta, [ej.] hacia adelante, [mientras tanto] el apogeo de la excéntrica, en una vuelta, recorre 11;9º en dirección opuesta, (nuevamente, hacia adelante nuevamente): ésta es la cantidad por la cual la elongación doble, de 24;23º, excede el movimiento en latitud de 13;14º. La combinación de ambos de estos movimientos, los cuales toman lugar en direcciones opuestas, tal como dijimos, alrededor del centro de la eclíptica, producirá como resultado, que el radio transportando el centro del epiciclo y el radio transportando el centro de la excéntrica estarán separados por un arco cuya suma es de 13;14º y 11;9º, y será el doble de la cantidad de la elongación (que es de aproximadamente 12;11 ½º). Por lo tanto el epiciclo atravesarárecorrerá la excéntrica dos veces durante un mes [sinódico] medio. Asumimos que éste vuelve al apogeo de la excéntrica en la conjunción y oposición media.
 
En orden de ilustrar los detalles de la hipótesis, imaginar [Fig. 5.1] un círculo ABGD en el plano inclinado de la Luna concéntrico con la eclíptica, con centro en E y diámetro AEG. Sea el apogeo de la excéntrica, el centro del epiciclo, el límite norte, el comienzo de Aries y el Sol medio, estando [todo] localizado en el punto A en el mismo instante.
<center>Fig. 5.1</center>
 
Luego, digo, que en el curso de un diadía todo el plano [inclinado] se mueve hacia adelante desde A hacia D alrededor del centro E, por cerca de 3’: por lo tanto el límite norte (que es [aún representado por] A) alcanza [[File: Almagesto Introducción PISCES.png|19px|Pisces]] 29;57º. Los dos movimientos opuestos son transportados por el radio correspondiente a EA [moviéndose] uniformemente alrededor de E, el centro de la eclíptica. Por lo tanto digo que en el curso de un día, el radio [que pasa] a través del centro de la excéntrica correspondiente a EA gira uniformemente hacia adelante [ej. en el orden contrario] de los signos hacia la posición ED, transportando el apogeo de la excéntrica hacia D <ref name="Referencia 008"></ref>, y creando el arco AD de 11;9º.
 
[Al mismo tiempo] el radio a través del centro del epiciclo [correspondiente a EA] gira uniformemente, nuevamente alrededor de E, hacia atrás a través de los signos hasta la posición EB, transportando el centro del epiciclo hacia H, y creando el arco AB de 13;14º. Por lo tanto la distancia aparente de H, con el centro del epiciclo, es de 13;14º (en movimiento en latitud) desde el límite norte A, 13;11º (en longitud) desde el comienzo de Aries (el limite norte A se ha movido hacia [[File: Almagesto Introducción PISCES.png|19px|Pisces]] 29;57º en el mismo instante), y los 24;23º ([siendo] la suma del arco AD y el arco AB, y el doble de la elongación media diaria) desde el apogeo de la excéntrica D. Dado que, en este sentido, el movimiento a través de B y el movimiento a través de D, se encuentran cada vez uno con el otro en la mitad de un mes [sinódico] medio, es obvio que estos movimientos siempre serán diametralmente opuestos en intervalos de un cuarto y tres cuartos de aquel periodo, ej. en las cuadraturas medias. En estos instantes el centro del epiciclo, localizado en EB, será diametralmente opuesto al apogeo de la excéntrica, localizado en ED, y [por lo tanto] estará en el mismo perigeo de la excéntrica.
 
Es claro también, que bajo estas circunstancias la excéntrica misma (es decir, el hecho de que el arco DB no sea similar al arco DH) no generará ninguna corrección al movimiento diario. El movimiento uniforme de la línea EB es contada, no a lo largo del arco DH de la excéntrica, sino a lo largo del arco DB de la eclíptica, dado que ésta gira, no alrededor del centro de la excéntrica Z, sino alrededor de E. La única [corrección] que resultará es aquella debido a la diferencia en el efecto del epiciclo: como el epiciclo se mueve hacia el perigeo ésta produce un incremento contínuo en la ecuación de la anomalía (disminuyendo y sumando por igual), ya que el ángulo formado por el epiciclo en el ojo del observador es mayor en las posiciones [del epiciclo] más cercanas al perigeo. Por otro lado, en general, no habrá una diferencia en la primera hipótesis cuando el centro del epiciclo esté en el apogeo A, que esse la ubicaciónubica en las conjunciones y oposiciones medias.
 
Si dibujamos [Fig. 5.2] <ref name="Referencia 009"></ref> el epiciclo MN alrededor del punto A, AE / AM es la misma proporción como aquella que demostramos desdeen los eclipses. La diferencia más grande será cuando el epiciclo alcance a H, el perigeo de la excéntrica (aquí como XO). Esto ocurre en las cuadraturas medias. La proporción XH / HE es mayor que aquella en alguna otra posición, dado que XH, el radio del epiciclo, es siempre una constante en longitud, mientras EH es la más corta de todas las líneas dibujadas desde el centro de la Tierra hacia la excéntrica.
 
[[File:Almagesto_Libro_V_FIG_02.png|center|379px|Fig. 5.2]]
{{listaref|refs=
<ref name="Referencia 007">Sobre estos capítulos 2-4 ver HAMA 84-8, Pedersen 184-9.</ref>
<ref name="Referencia 008">Omitiendo <span style="font-family: Symbol"> </span> después <span style="font-family: Symbol"></span> en H358, 20-21. Esto podría significar “y describir la excéntrica DH alrededor del centro Z”. Esto no tiene sentido: EA “no describe la excéntrica” (desdedado que estaésta no es un radio de la excéntrica), sino que meramente marca la posición del apogeo de la excéntrica. Si Ptolomeo quiso referirse a la excéntrica aquí, presumiblemente podría haber escrito (como lo hace el manuscrito Is.) <span style="font-family: Symbol"> </span> “y sí la excéntrica DH esta descrita alrededor del centro Z”. Sin embargo, parece más probable que ésta es una interpolación de alguien que quiso [hacer] una referencia explícita al dibujo de la excéntrica DH con centro en Z, representada en la Fig. 5.1 y referida por Ptolomeo más abajo [(adelante del tratado)].</ref>
<ref name="Referencia 009">La figura dada por [https://es.wikipedia.org/wiki/Johan_Ludvig_Heiberg Heiberg] (p. 360), tomada de la tradición del manuscrito representado por A, es errónea al hacer E [como] el centro del círculo y adicionaragregar un punto K encima de él. Mi figura está [bien] de acuerdo con el texto y con la parte de la tradición Arábiga (ej. la P), excepto que todos los manuscritos Árabes tienen el equivalente de Θ en cambio de O. Manitius hace la misma corrección, excepto que innecesariamente adicionaagraga el punto Z (no asentado en los manuscritos) como el centro del círculo.</ref>
}}
 
5365

ediciones

Menú de navegación